首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34508篇
  免费   4074篇
  国内免费   2689篇
化学   23462篇
晶体学   338篇
力学   1648篇
综合类   230篇
数学   4026篇
物理学   11567篇
  2023年   552篇
  2022年   517篇
  2021年   819篇
  2020年   1039篇
  2019年   1016篇
  2018年   856篇
  2017年   800篇
  2016年   1319篇
  2015年   1272篇
  2014年   1487篇
  2013年   2212篇
  2012年   2523篇
  2011年   2682篇
  2010年   1819篇
  2009年   1641篇
  2008年   2003篇
  2007年   2022篇
  2006年   1717篇
  2005年   1597篇
  2004年   1305篇
  2003年   1189篇
  2002年   1093篇
  2001年   834篇
  2000年   746篇
  1999年   735篇
  1998年   539篇
  1997年   534篇
  1996年   474篇
  1995年   516篇
  1994年   510篇
  1993年   413篇
  1992年   358篇
  1991年   369篇
  1990年   360篇
  1989年   261篇
  1988年   217篇
  1987年   223篇
  1986年   179篇
  1985年   258篇
  1984年   270篇
  1983年   182篇
  1982年   200篇
  1981年   162篇
  1980年   164篇
  1979年   136篇
  1978年   114篇
  1977年   162篇
  1976年   142篇
  1975年   119篇
  1973年   114篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
By tuning the length and rigidity of the spacer of bis(biurea) ligands L, three structural motifs of the A2L3 complexes (A represents anion, here orthophosphate PO43?), namely helicate, mesocate, and mono‐bridged motif, have been assembled by coordination of the ligand to phosphate anion. Crystal structure analysis indicated that in the three complexes, each of the phosphate ions is coordinated by twelve hydrogen bonds from six surrounding urea groups. The anion coordination properties in solution have also been studied. The results further demonstrate the coordination behavior of phosphate ion, which shows strong tendency for coordination saturation and geometrical preference, thus allowing for the assembly of novel anion coordination‐based structures as in transition‐metal complexes.  相似文献   
103.
Two isomers of commercial 4,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (4,4′-BPADA), that is, 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,4′-BPADA) and 3,3′-(4,4′-isopropylidenediphenoxy) bis(phthalic anhydride) (3,3′-BPADA), were synthesized through aromatic nucleophilic substitution from nitrophthalonitrile and bisphenol A. 3,4′-BPADA was first synthesized from two intermediates, that is, 3-(4-[4-hydroxyphenylisopropylidene] phenoxy) phthalonitrile (3-BPADN) and 3,4′-(4,4′-isopropylidenediphenoxy) bis(phthalonitrile) (3,4′-BPATN). The corresponding three series of polyetherimides (PEIs) were prepared with two representative aromatic diamines (4,4′-oxydianiline and m-phenylenediamine (m-PDA)) via two-step procedure and chemical imidization. Isomeric polyimides showed Tgs from 206 to 256°C in nitrogen and Td5%s from 488 to 511°C in argon, good mechanical properties (tensile moduli of 2.3–3.3 GPa, tensile strengths of 70–96 MPa, and elongations at break of 3.2%–5.1%), and good solubility. With the introduction of 3-substituted phthalimide unit, PEIs displayed higher Tg values, lower strengths and elongations, better solubility and larger d-spacings. The rheological properties of thermoplastic polyimide resins based on the BPADA isomers were investigated, which showed that polyetherimide PEI-3b derived from 3,3′-BPADA and m-PDA had the lowest melt viscosity among the isomers, indicating that the melt processibility had been greatly improved.  相似文献   
104.
A series of tetraimidazolium salts with different anions was prepared and applied in the isomerization of β-pinene oxide. After examining the activity of different catalysts, a remarkable enhancement of the selectivity of perillyl alcohol (47 %) was obtained over [PEimi][HNO3]4 under mild reaction conditions and using DMSO as the solvent. Furthermore, noncovalent interactions between solvent molecules and the catalyst were found by FT-IR spectroscopy and confirmed by computational chemistry. The homogeneous catalyst showed excellent stability and was reused up to six times without significant loss.  相似文献   
105.
采用湿化学法合成了Eu原子掺量5%的Lu2O3陶瓷前驱体,通过SEM、XRD研究了煅烧前后前驱体和1 100 ℃煅烧4 h后粉体的形貌、结构以及物相。结果表明煅烧后的粉体为纳米类球形、高分散且结晶性良好的颗粒。颗粒尺寸为68.5 nm。使用煅烧后的粉体为原料,在1 650 ℃真空烧结30 h制备了高透过率的Eu:Lu2O3陶瓷,晶粒尺寸为46 μm,在611 nm处的直线透过率可以达到66.3%。此外对陶瓷的吸收曲线、光致激发和发射光谱特性以及X射线激发发射光谱进行研究。可观察到,Eu:Lu2O3陶瓷存在基质和激活离子两类吸收,光致发光光谱和X射线激发发射光谱均可以看出Eu:Lu2O3陶瓷存在极强的5D07F2跃迁发光,位于611 nm处。对比商业的BGO单晶的X射线发射光谱,可得本实验中制备的陶瓷的光输出为85 000 ph/MeV。Eu:Lu2O3陶瓷本身有着高X射线以及高能粒子的阻止能力,结合高光输出特性,表明Eu:Lu2O3陶瓷在X射线成像等领域具有巨大的潜在应用价值。  相似文献   
106.
Duzhong Jiangya Tablet (DJT) composed of Eucommia ulmoides Oliv. and several other traditional Chinese medicines is a Chinese herbal compound, which is clinically used to treat hypertension. The aim of this study was to evaluate the antihypertensive effect of DJT and amlodipine besylate (AB) on the synergistic treatment of spontaneously hypertensive rats (SHRs), and to explore its antihypertensive mechanism. The synergistic therapeutic effect of DJT in combination with AB on SHR was studied using two metabolomics methods based on mass spectrum (MS) and nuclear magnetic resonance. Metabolomics analysis of plasma, urine, liver, and kidney and the combination of orthogonal partial least squares discriminant analysis was performed to expose potential biomarkers. Then, the overall metabolic characteristics and related abnormal metabolic pathways in hypertensive rats were constructed. Blood pressure measurements showed that DJT combined with AB has better effects in treating hypertension than it being alone. A total of 30 biomarkers were identified, indicating that hypertension disrupted the balance of multiple metabolic pathways in the body, and that combined administration restored metabolite levels better than their administration alone. The changes of biomarkers revealed the synergistic therapeutic mechanism of DJT combined with AB, which provided a reference for the combination of Chinese and Western medicines.  相似文献   
107.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
108.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   
109.
We report in this article a cascade reaction strategy for the synthesis of complex N-heterocyclic compounds with contiguous and tetrasubstituted stereogenic carbons. Under the sequential catalysis of a chiral binol–Ti complex and BF3, cyclopentanone-derived tertiary enamides undergo an enantioselective enamine addition to ketone carbonyls followed by diastereoselective trapping of the resulting acyliminiums by electron-rich aryl moieties to furnish four- and five-membered ring-fused N-heterocyclic products as the sole diastereomers in high yields with up to 99 % ee.  相似文献   
110.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号